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Abstract-Assuming elastic-plastic material behavior the slow growth of Mode 1Il crack under both
monotonic and pulsating loadings is considered. Rice's idea of universal R-eurve is employed while the
mathematical analysis is based on the one-dimensional plasticity model suggested by Koslrov and Nikitin.
Motion of a quasi-static Mode III crack. is studied and the stable/unstable transition points are found
through application of the final stretch failure condition proposed in 1972 by Wnuk.. Alopritlunic formula
for fatigue crack extension rate is derived. Results are compared to other well-known solutions.

NOTATION
T~ applied stress at infinity
TO yield stress in shear

Q= T..lTo loading parameter
R plastic zone size
/ half crack length

IJ. Kircbbotrs modulus
A size of Neuber's particle

Rj • R.. initial and asymptotic values of plastic zone size, respectively
a ductility parameter
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K...... Kmin maximum and minimum stress intensity factors during a cycle, respectively

"0. Ro final stretch and related 10 it opening constant, Ro = (p.[To)Uo
Kr fracture toughness
N number of cycles

P....., plJIin ma~imum and minimum non-dimensional plastic zone sizes during a loading cycle, respec
tively (p = RIA).

J. INTRODUCTION
The primary objective of the present paper is to find the stable/unstable transition in the failure
mode for a material containing crack in anti-plane strain under monotonic and cyclic loadings.
In the first case, the crack eventually becomes unstable leading to the Joss of structural integrity

+01'. Marian PisZtzek died tragically at the age of 30 on 23 November 1978 in Illinois.
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of the whole component, while in the second problem it is required that the fatigue crack
extension rate or the life of an element are predicted from the theoretical considerations.

First we shall derive an equation of motion of a subcritical growth of crack which is
assumed to be quasi-static up to the point of terminal instability, i.e. catastrophic fracture. In
order to use Rice's concept of a resistance-curve[l] one needs to know the fields of plastic
stress and strain at the crack tip. It will be assumed, that the extent of yielding is small
compared to the crack length. i.e we shall contain attention to the small scale yielding case. The
plastic flow condition that we shall require to be satisfied is the Huber-Mises-Hencky
maximum shear strain energy criterion. A modified Dugdale model equipped with the final
stretch failure criterion will be applied in order to make the problem mathematically tractable.

One-dimensional model of plastic zone in longitudinal shear, see Kostrov-Nikitin[2]. gives
for the small scale yielding range and for a stationary crack

(1)

This may be compared with other known results, namely Hult-McClintocks:t

(I a)

and Dugdale - B - C - s:

(Ib)

Such comparison seems to be encouraging. The R11 ratio is proportional to the square of the
loading parameter in all of the above solutions. It is clear. that the extent of the plastic zone
directly ahead of the crack does not appear to be very sensitive to the particular shape of the
yielded zone associated with a Mode III crack.

Let us now briefly discuss the plastic yielding around a stationary crack according to the
model of Kostrov and Nikitin[2]. We recall first that in applying the Dugdale model of plastic
flow at the vicinity of the crack in anti-plane strain state, some singularity in Txz appears which
influences the COD value and the plastic zone length. (Such singularity does not exist for the
plane stress state.) Using the Dugdale model for anti-plane strain situation one obtains in the
region near the crack tip

(2)

This fact was pointed out by Heald[3] and Field [4]. Solutions given by Heald[3] and by
Field [4] indicate the singular behaviour of Txz at the crack tip. On the other hand, the
one-dimensional model of Kostrov and Nikitin[2] tends to bear this singularity out and to
eliminate it. These authors require the Huber-Mises-Hencky plastic condition to be satisfied

tThe formula R = If! resulted from expanding the exact expression of Hult and McClintock for the extent of the
plastic zone directly ahead of the crack tip

(1*)

at the point Q = O. Symbol E denotes a complete elliptic intep'al of the second kind, while (2Q[1 +Q2) is its argument. The
expression (l*) was found by Bilby. Cottrell and Swinden(tSJ and compared against their result

R = I{sec (trQ/2) - I}. (1**)

which happens to be identical with Dugdale formula obtained for a Mode) crack. The differences between (1*) and (1*.)
do not exceed 5%.
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within all of the yielded zone associated with a Mode III c:tack. namely

(3)

(4)

It should be pointedt out, however, that the Kostrov-Nikitin's assumption of one-dimen
sional plastic zone subjected to the Mises yield criterion violates the associated plastic flow rule
unlike the Heald's and Field's solutions which employ the one-dimensional plasticity model
combined with the Tresca yield criterion and the classical solution of Hult and McClintock[13]
derived from field plasticity coupled with the von Mises yield condition. Although some
exceptions to the associated plastic flow rule may exist and they have been observed
experimentally, see [16], it is generally believed that such associated flow rule is valid for any
homogeneous elastic-plastic material.

Under the assumption (3) the mathematical analysis results in the displacement distribution
along the plastic zone (see Fig. I):

1(102+1'X2) (1 a-y'(a2-x2) y'(Q2_ X2»)
U=± 2JL1'X iloga+\I(a2-x2)+ a

for y=±O, 1sx s a.

Dimensionless function (4) is shown in Fig. 2.

2. DIFFERENTIAL EQUATION GOVERNING THE STABLE CRACK GROWTH. FINAL STRETCH
CRITERION

The definition of "stable growth", even though very often used, isn't adequate because any
growth leading to catastrophe is unstable in the local sense while the terminal (critical) point
corresponds to the loss of stability in a global sense. Irwin and McClintock [5] showed, that for
ductile materials subcritical crack growth proceeds while the applied load increases. Fracture
extension of this type can be decribed in two ways:

(a) through a variable stress intensity factor K, which depends on the current crack length;
(b) through a resistance curve, either an R-curve of a JR-curve. Both approaches reduce to

Yj
R

_~E:2t:z::tZ1:}===1I==:=::Jf£2jr1ZlIt22iI~ "7
R·o-/

Fig. I. One-dimensional model of the plastic deformation zones associated with a Mode III crack. The
stresses within the yield zone are required to satisfy the Miese-Huber-Hencky criterion T~z +T.' =Tl
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FiB. 2. Crack "profile" lICCOrdiDl to the Kostrov-Nikitin model (the z.component of the displacement field
is shown).
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t Authors are indebted to the ~eviewer who brought this point out.
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certain nonlinear differential equations, for R(/) or K(/) functions. Rice was the first to propose
the variable length of plastic zone as a factor controlling subcritical crack growth. Idea of Rice
was then shown equivalent to the approach of Irwin and McClintock, see [I).

Fracture criterion proposed by Wnuk[17] is somewhat analogous to the Cherepanov's[7]
hypothesis of a constant plastic energy dissipation but it is only the fraction of the total energy
dissipated within the plastic zone, named the "essential work of fracture" (lost in the final act
of fracture occurring over the Neuber's particle) which is supposed to control the quasi-static
crack growth. Wnuk required that the prior-to-fracture work done at a fixed material point P,
while the process zone of micro-structural dimension ~ passes through it, is a material property

(I S(xp, r)' u(xp, r) dr = constant.
)HI

(5)

Since the length ~ is on the order of a characteristic micro-structural size, sometimes referred
to as "Neuber's particle" (approaching zero for a perfectly brittle continuum), one may apply
the approximation of Glennie and Willis [8] and divide the unsteady motion of crack into a
number of constant speed segments. With an assumption of a constant restraining stress equal
yield stress Wnuk's criterion for failure reads

(' u(xp, r) dr = UoJHI
(6)

in where the symbol Uo denotes the opening constant or the "final stretch". Final stretch and
COD criteria are equivalent only in the limit, when BR -+ 0, that is, when R approaches its
steady state value R~.

Developing Kostrov-Nikitin's solution (4) into Taylor expansion we arive at

(7)

Here x denotes the distance measured from the crack tip.
Applying (1) under an assumption of small scale yielding we obtain

(7a)

which gives for the upper limit of the integral (6)

while for the lower limit we have,[9]

u/(t-ot)=;(R-a) ~(I-i)'

Fracture criterion (6) now takes the form

dR ~(~) Uo' a
R+-~-(R-~) 1-- ==-=

dl R ro

while (7a) for x =0 gives

(8)

(8a)

(9)

(10)
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in which Ro is a new opening constant dependent on the final stretch uo. Inserting (10) into (9)
we obtain a non-linear differential equation which governs the quasi-static extension of a Mode
III crack within the subcritical range of loading, namely

In a dimensionless form we have

~ =Po - P+(p - I)~ ( I - ~)

where

(11)

(12)

It is of interest to compare the initial slope of the R-curve given by eqn (12) with that
predicted for Mode III by the incremental theory of plasticity, Rice[I]. From eqn (12) we have
the initial slope

(13)

where a(= Po - 1) is the ductility parameter defined by McClintock[13] as the ratio of the plastic
component of the shear strain at fracture to the strain at yield. Rice has

(~ )0 = a - log (1 +a).

Both results are plotted in Fig. 3. The third curve shown in Fig. 3 represents the initial slope of
the resistance curve (dP/dA)o predicted from the Wnuk's final stretch model. For the Mode III
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Fig. 3. Initial slope of the R-nsiataDc:e curve for a Mode mcrack as a function of the McClintock's
ductility parameter a. I. Rice's solution based on incremental plasticity, 2. Present solution, 3. Wnuk's

solution based on the final stretch concept.
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configuration Wnuk[12] obtained the following result

~~ =Po- 1/2 log (4ep)

which implies the initial slope

(:~t = a -1/2-1/21og[4(a + 1)].

(J4a)

(14b)

It might be of interest to point out a close resemblance of these "final stretch" solutions
with those obtained by Wnuk[17,18] and more recently by Rice and Sorensen [19] and
Rice et al. [20] for the quasi-static tensile fracture. As it turns out, the only difference
between the Mode I and Mode III solutions derived from the final stretch concept is in the
definition of the constant Po, i.e.

{
(l-LITo)(uo/A) for Mode III

Po = (7TE1/4 Y)(uo/A) for Mode I (14c)

in which Uo is the final stretch, Y denotes the effective yield stress encountered at the front of a
propagating Mode I crack, while E1 is the Young modulus E in plane stress and E(I- jJ

2r l in
plane strain. When these relations are taken into account, the eqn (l4a) remains identical for
both modes. Similarly, a remarkable analogy was found by Rice et al. [19, 20] in their final
result for dp/dA and the form (l4a) given in 1972 for the tensile fracture by one of the present
authors.

3. CRACK GROWTH UNDER MONOTONIC LOADING

Let us find now the critical point at which the quasi-static motion of the crack, governed by
eqn (12) changes over to a spontaneous and rapid propagation. For this purpose new variables
are suggested, namely

We have

while eqn (12) assumes the formt

x = log A

Y=log p. y = y(x). (15)

(16)

(16a)

We have to keep in mind that the plastic zone size depends not only on the current crack length
but also on the external load applied to material and represented here by the dimensionless
loading parameter Q(=r"ho). Within the subcritical range of crack growth the loading
parameter itself is a function of the crack length. Therefore, we have

p(A) =p(A, Q(A» (17)

tin the numerical integration of eqns (12) and (161) it has heen assumed that the extent of the plastic zone at the onset
of crack llI'0wtb Rj equals the opening constant Ro. This is an approximation wbich ought to be verified experimentally.
McClintock'sI2!] theory sugests a functional relation between both constants, namely

Ro =(4/2)(log4+ V2(Rj4)-1].
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Taking the first derivative of (17) we obtain

~_~ ~.dQ
dA - iJA + iJQ dA'

(18)

At the critical point the crack continues to propagate at no further increase of load, thus

(dQ) =0
dA I

(19)

where the index "[" indicates "fracture". Combining eqns (18) and (19) gives

(~) - (~)
dA I - iJ1 "

(20)

For the geometrical configuration considered here eqn (1) yields

(21)

This substituted back into eqn (16) implies that at the critical point the derivative dy/dx equals
unity, namely

(22)

(23)

The function dy/dx plotted vs the dimensionless crack length is shown in Fig. 4.
Now we compute the critical value of the loading parameter (Q/) and the critical crack

length (AI) which defines the function Q(A), i.e.

Po-2Q2(A + 1)+ (2Q
2
A _1)3/2

dQ _ QV2A
dA - 4QA
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Fia. 4. (a) Slope of the resistance curve for Mode m fracture 8Dd (b) the R-resistance curve predicted by
the present investiption (curve 1) 8Dd Wmdc's fiIlaI stretch model (eutve 1). Both II'llpbs are drawn in

non-dimensional coordinates (A "'I/~ p'" RlI1. y .. 1og Po x -101 A).
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At the point of transition to an unstable propagation the derivative dQ/dA vanishes resulting in
the following locus of terminal instability

={ZQ2(A + 1) _ (ZQ2 A- 1)3/2} .
Po QV(ZA) /

(Z4)

Computed critical values of Q and A are listed in Table 1 while the integral curves Q =Q(A)
obtained numerically from eqn (23) are shown in Fig. 5.

4. CRACK GROWTH UNDER CYCLIC LOADING

From Cherepanov's[7] and Wnuk's[6] theory of fatigue it follows that the the crack growth
during cyclic loading could be viewed as a sequence of the subcritical and stable crack
increments occurring within each successive load cycle. Since the amount of crack growth
during a single cycle is a negligible fraction of the total crack length, it is reasonable to assume
that the latter remains constant over a given loading cycle. This assumption facilitates
somewhat the computational task aimed at the prediction of the fatigue crack growth rate,
dA/dN. To this end let us integrate the eqn (12) in a closed form. Omitting the algebraic details,

roo AO IIf Q, 1\0 il,c Qf

J.O 100 120.5 0110 50 64.4 0136

4.2 100 129.6 0.115 50 69.3 0145

100 100 153.7 0.133 50 806 0163

200 100 169.0 0.141 50 86.9 0.170

100.0 100 186.0 0. 148 50 93.3 0.176
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Fig. 5. Loading parameter Q(=T.}TO) shown as a function of the current crack length A(=/It.) during the
subcritical phase of Mode III fracture.
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we have

A=Ao+(A I +A2)(l _ V:xt~ vol + log m~ ~01.42

.1'1::ol.4J 'I:o~ :1
1
1.4. ·1:°~ ::/.45J. v =~ (P; ').

Finally, the fatigue crack. extension rate is given by

1143

(25)

(25a)

v . - '(Pm;" - I)
min - " Pmi"

(25b)

The current length of crack does not alter appreciably during one cycle and therefore is
considered constant in (25a). We have just derived the "logarithmic law" of fatique crack
growth in anti-plane strain mode of deformation. Analogous to the equation of Cherepanov and
Wnuk[7,6]

(26)

in which the empirical "crack closure factor" S equals unity if the minimum load in the cycle
falls above the crack closure threshold. In the numerical examples which we have appended
here, the following relation has been used

We have also assumed that

(K rnax)2=~.
Kr p-x;

Pmi" = I (or Vmill = 0).

(27)

Results are plotted in Figs. 7(a), (b) for two different materials distinguished by the constant
p.,.

From the mathematical limitations imposed on this model we have to require that both
quantities, Pmir! and Pmax are much greater than unity. For other values of P, i.e. for smaller
KrnaxlKc ratios and lesser p., levels we have to extrapolate the function (25a). Material constants
p., and Ashould be estimated experimentally. In spite of lack of such experimental data we can

log (J!.1..)
dN

K< log AK

Fig. 6. Fatigue crack growth rate shown as a function of the stress intensity range.
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Fig. 7. Predicted dA/dN vs Kmaxl Kc curves for two materials; p. = 4.2 and p. = 100.

compare our results with those obtained by Cherepanov[8], Clark[lO] and Forman [11]. The
pertinent constants were chosen in such a way that the curves agree with analogous functions
given by the previous authors.

5. CONCLUSIONS

The investigation outlined above makes it possible to draw the following conclusions:
I. The Dugdale model for anti-plane strain can be modified by a removal of the singularity

in the stress component 1'xz in the vicinity of the crack tip.
2. In case of small scale yielding the stress intensity factor or the plastic zone size or Rice's

J-integral can be used alternatively as the controlling factors for the quasi-static crack.
3. If the plastic zone length is chosen to represent the subcritical crack growth, then its

characteristic values Rj (initial) and R.., (steady-state) are material properties.
4. The crack moves "jumping" with a constant velocity over Neuber's particle of length Ii,

considered here to be a constant, too.
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Fig. 8. Comparison of lhe experimenlal dala on faligue collecled by Chercpanov(7!. Clark[IO), Forman[I I!
and the theoretical dala derived from lhe present investigation.

5. Criterion of propagation is identical in monotonic and pulsating cases. It follows that the
propagation exists even when the applied stress is much less than the stress necessary to cause
rapid spread of fracture.

6. Transition to unstable crack propagation depends on (a) geometry, (b) ductility (p..) and
"tearing modulus" (Po) of the material, (c) initial and current crack length.

7. Within the small scale yielding range the R-resistance curve in Mode III is a unique
material property independent of the geometrical and loading configurations just as it was found
to be the case for the Mode I s.s.y. resistance curve.
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